HILBERT-KUNZ MULTIPLICITIES AND VECTOR BUNDLES OVER CURVES

V. TRIVEDI

1. Abstract

Let (R, \mathbf{m}) be a Noetherian local ring (respectively a standard graded ring over a field k with the graded maximal ideal \mathbf{m}) of dimension d and of prime characteristic p > 0, and let I be an \mathbf{m} -primary ideal (respectively a homogeneous ideal of R, of finite colength). Then one defines the *Hilbert-Kunz function* of R with respect to I as

$$HK_{R,I}(p^n) = \ell(R/I^{(p^n)}),$$

where

 $I^{(p^n)} = n$ -th Frobenius power of I

= ideal generated by p^n -th powers of elements of I.

The associated *Hilbert-Kunz multiplicity* (HK multiplicity for the sake of abberviation) is defined to be

$$e_{HK}(R,I) = \lim_{n \to \infty} \frac{HK_{R,I}(p^n)}{p^{nd}}.$$

In the graded situation we denote alternatively HK multiplicity $e_{HK}(R, I)$ by $e_{HK}(X, \mathcal{L}, I)$, where X = Proj R and $\mathcal{L} = \mathcal{O}_X(1)$ is the very ample line bundle on X and I is a homogeneous ideal in the homogeneous coordinate ring of X, of finite colength.

In case I is the maximal ideal of R we denote HK multiplicity by $e_{HK}(R)$ or $e_{HK}(X, \mathcal{L})$.

In this talk we discuss HK multiplicity of two dimensional graded ring R (of projective curve) over a field k of char p > 0, with respect to a homogeneous ideal I of finite colength. Without loss of generality one can assume that the ring is a domain and k is algebraically closed. Let I be generated by homogeneous generators f_1, \ldots, f_k of degrees d_1, \ldots, d_k respectively. Consider the following short exact sequence of sheaves of \mathcal{O}_X -modules

$$0 \longrightarrow V_{\mathcal{L},I} \longrightarrow \oplus_i \mathcal{O}_X(1-d_i) \longrightarrow \mathcal{O}_X(1) \mapsto 0,$$

where $\mathcal{O}_X(1-d_i) \to \mathcal{O}_X(1)$ is given by multiplication by f_i . Then $\pi^*(V_{\mathcal{L},I})$ is a vector bundle of rank k-1 on \widetilde{X} , where $\pi: \widetilde{X} \to X$ is the normalization of X.

We express HK multiplicity in terms of (i) "standard" invariants of the curve which are constant in a flat family and (ii) normalized slopes of the quotients occuring in a strongly semistable Harder-Narasimhan filtration (HN filtration) of $\pi^*(V_{\mathcal{L},I})$ on \widetilde{X} . As a consequence we get

Theorem 1.1. (1) $e_{HK}(R, I)$ is a rational number.

(2) Moreover if f_1, \ldots, f_k are minimal generators of I then

$$e_{HK} \ge d/2((\sum_{i} d_i)^2/(t-1) - \sum_{i} d_i^2)$$

and the equality holds if and only if $V = \pi^* V_{X,\mathcal{L}}$ is strongly semistable, i.e., $F^{s*}(V)$ is semistable, for all $s \geq 0$, on \widetilde{X} , where $F^s : \widetilde{X} \to \widetilde{X}$ is the s-fold iterated Frobenius map.

¹⁹⁹¹ Mathematics Subject Classification. 13D40.

V. TRIVEDI

(The first part of the above theorem was also proved independently by Brenner, for general d_i and by the speaker for $d_i = 1$, giving essentially the same proof).

In case of plane curves, when p > d(d-3), we have a simple numerical characterization of semistability of the Frobenius pullback of the kernel bundle $V_{\mathcal{L},I}$, via HK multiplicity. In particular we prove the following.

Theorem 1.2. Let X be an irreducible plane curve of degree d, i.e., $X = \operatorname{Proj} R = k[x, y, z]/(f)$, where f is an irreducible homogeneous polynomial of degree d. Then, there exist integers l and s such that one of the following occurs:

- (1) $e_{HK}(X, \mathcal{O}_X(1)) = \frac{3d}{4}$ (2) $e_{HK}(X, \mathcal{O}_X(1)) = \frac{3d}{4} + \frac{l^2}{4dp^{2s}}$, where $s \ge 1$ and $l \equiv pd \pmod{2}$ with $0 < l \le d(d-3)$.
- (3) $e_{HK}(X, \mathcal{O}_X(1)) = \frac{3d}{4} + \frac{l^2}{4d}$, where $l \equiv d \pmod{2}$ and $0 < l \le d$. (4) Moreover, if X is nonsingular then the only possible HK multiplicities are of type (1) or (2).
- (5) If X has a singular point of multiplicity r > d/2 then

$$e_{HK}(X, \mathcal{O}_X(1)) = \frac{3d}{4} + \frac{(2r-d)^2}{4d}.$$

Examples computed so far show that $e_{HK}(R, I)$ can depend on char p of the ring, and a natural question is to ask how the HK multiplicities of reductions (mod p) of a given variety (in char. 0) vary with p. To make this more precise consider the following situation. Let kbe an algebraically closed field of characteristic 0. Let R be a finitely generated \mathbb{N} -graded two dimensional domain over k. Let $I \subset R$ be an homogeneous ideal of finite colength. For the pair (R, I) we take a spread (A, R_A, I_A) , which means we choose a finitely generated Z-algebra $A \subseteq k$, a finitely generated N-graded algebra R_A over A and an homogeneous ideal $I_A \subset R_A$ such that $R_A \otimes_A k = R$ and for any closed point $s \in \text{Spec } A$ (*i.e.* maximal ideal of A) the ring $R_s = R_A \otimes_A k(s)$ is a finitely generated N-graded 2-dimensional domain (which is a normal domain if R is normal) over k(s) and the ideal $I_s = \text{Im}(I_A \otimes_A k(s)) \subset R_s$ is an homogeneous ideal of finite colength.

We prove the following result.

Theorem 1.3. Let R be a standard graded two dimensional domain over k. Let $I \subset R$ be an homogeneous ideal of finite colength. Let (A, R_A, I_A) be a spread as given above. Then

$$\lim_{s \to s_0} e_{HK}(R_s, I_s)$$

exists, where $s_0 = \text{Spec } Q(A)$ is the generic point of Spec A, and the limit is taken over closed points $s \in \text{Spec}A$.

The proof is again reduction to a problem on arbitrary vector-bundles over nonsingular projective curves. We prove the following key lemma (which is not true for arbitrary p), making crucial use of a result by Shepherd-Barron.

Lemma 1.4. If $p \ge 4(genus(X) - 1)(\operatorname{rank} V)^3$, then the HN filtration of F^*V is a refinement of the Frobenius pull back of the HN filtration of V,

We analyse the HN (Harder-Narasimahan) polygons $HNP_{p^s}(V)$ which corresponds to the iterated Frobenius pull back $F^{**}V$ of vector bundle V on X. Using the above result we deduce that as $p \to \infty$ the polygon

$$HNP_{p^s}(V) \to HNP(V).$$

In particular the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to ∞ . This limit, which is (relatively) an easier invariant to compute, is a *lower bound* for the HK multiplicities of the reductions (mod p), though examples of Monsky show that the convergence is <u>not</u> monotonic as $p \to \infty$, in general.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India

E-mail address: vija@math.tifr.res.in